
1

Designing a topological modeler kernel:
a rule-based approach

Thomas Bellet1, Mathieu Poudret1, Agnès Arnould1 , Laurent Fuchs1, Pascale Le Gall2

1XLIM-SIC, UMR CNRS 6172, University of Poitiers, France
2MAS, Ecole Centrale Paris, France

Keywords—topological base modeling; graph
transformation; topological coherence ; rapid pro-
totyping

Abstract—In this article, we present a rule-based
language dedicated to topological operations, based
on graph transformations. Generalized maps are
described as a particular class of graphs deter-
mined by consistency constraints. Hence, topological
operations over generalized maps can be specified
using graph transformations. The rules we define,
are equipped with syntactic criteria ensuring that
graphs obtained by applying the rules to generalized
maps are also generalized maps. We have developed
a static analyzer of transformation rules that checks
the syntactic criteria to ensure the preservation
of generalized map consistency constraints. Based
on this static analyzer, we have designed a rule-
based prototype of a kernel of a topology-based
modeler. Since adding a new topological operation
can be reduced to write a graph transformation rule,
we directly obtain an extensible prototype where
handled topological objects have built-in consistency.
Moreover, first benchmarks show that our prototype
is reasonably efficient compared to a reference im-
plementation of 3D generalized maps using classical
implementation style.

1. INTRODUCTION

Currently, most of the modelers are topology-based
modelers. The geometric objects are implemented using
their topological structure, i. e. their division into ver-
tices, edges, faces, volumes, etc. Geometric components
are associated to topological cells. For example, points
may be associated to vertices. This introduction of
geometric data is called the geometric embedding. Thus,
operation definitions are split into a topological part,
computed on the topological structure, and a geometric
part, defined for each geometric component.

Most of the time, the operations are manually im-
plemented with as many ad hoc programs as there
are operations handled by the modeler. In previous
works [10], [9], we have showed that topological op-
erations of the generalized maps can be represented by
graph transformation rules. The main interest of rules
is that it becomes possible to deal with them in a
systematic way: a program dedicated to rule application

allows us to consider all operations in a consistent and
generic manner.

The main contribution of this paper is to provide a
first insight about how to implement a topology-based
modeler by the means of a rule application engine.
Thus, a topological operation will now be automati-
cally implemented as a rule interpretation by such an
engine. Moreover, in [8], we have proposed a manner
to automatically verify topological consistency of the
designed objects by checking syntactic criteria on rules.
Consequently, our rule-based kernel can be easily ex-
tended with new topological operations. Due to these
syntactic criteria, every new operations are consistent
from a topological point of view. This means that a
rule applied to a generalized map always produces a
generalized map.

This paper is organized as follows: we present graph
transformations and generalized maps (or G-maps, for
short) in section 2. In section 3, we present our language
for G-map transformation rules. In section 4, we give
syntactic criteria on rules ensuring the preservation
of topological consistency. In section 5, we briefly
present the main design points underlying our rule-based
modeler kernel. In section 6, we give some preliminary
and encouraging results of our prototype.

2. CONTEXT

In this section, we shortly introduce the key defini-
tions of both graph transformation rules [2], [3] and
generalized maps [6], [7].

2.1 Graph transformation rules

Let us introduce the basic notations concerning the
so-called double-pushout approach for graph transfor-
mation rules. A partially labeled graph is a classical
oriented graph with possibly labeled nodes and edges.
For example, in Fig. 1(a), G has five nodes respectively
named 1,2,3,5 and 6. The unlabeled nodes are drawn
with dots (like nodes 1,2 and 3) or with an empty circle
(like node 6). Edges are drawn using arrows possibly
labeled (by a or b in our example). Most of the time,
without ambiguity, edge names are omitted.

Moreover, two reverse edges n l→ n′ and n′ l→ n (like
the two edges between nodes 6 and 7 both labeled by

b) can be drawn with a single non-oriented link n
l
−− n′.

1 2

3

5 6e
b
b

a

(G)

c

(a) A graph G

1 2

3

5 6e
b
b

a

(G)

1 2

7
5 6e

a

(H)
fb

cc c
g

(b) A graph morphism

Fig. 1. Partially labeled graph and morphism

(see graph H of Fig. 1(b)). More formally, a partially
labeled graph G is a tuple (VG,EG,sG, tG, lG,V , lG,E)
composed of two finite sets VG and EG of nodes and
edges, two source and target functions sG, tG : EG→VG
and two partial labeling functions lG,V : VG→ LabelG,V
and lG,E : EG→ LabelG,E where LabelG,V and LabelG,E
are two label sets respectively of nodes and of edges.

All constructions of category theory are based on
morphisms. A morphism carries nodes and edges (with
possibly some renamings) and labels (with no relabel-
ing). For example, in Fig. 1(b), the morphism g : G→H
renames the node 3 in the node 7 and preserves the other
nodes. Morphisms can add nodes, edges (like the edge
from 7 to 6) and labels (like the label f of the node
6 and the label c of edge from 1 to 5), but morphisms
cannot remove either nodes, edges or labels. Formally, a
graph morphism g : G→H between two graphs consists
in two functions gV : VG → VH and gE : EG → EH that
preserve sources, targets and labeling functions. Such a
morphism is called an inclusion, and is noted g : G ↪→H,
when gV and gE are inclusion functions.

A graph transformation rule r : L←↩ K ↪→R is defined
by two inclusion morphisms K ↪→ L and K ↪→R between
three graphs L the left-hand side, R the right-hand side
and K the kernel. See the rule r on top of Fig. 2 for
example. The left-hand side L represents the pattern
which is matched, the right-hand side R represents the
pattern which replaces the pattern L and the kernel graph
K represents the interface between the patterns L or
R and the rest of the graph. Roughly speaking, the
transformation is simply defined by the removed part
L\K and the added part R\K.

To become workable, such a transformation graph rule
should be provided with some mechanisms explaining
how the rule is applied on a graph G. The first step
consists in making sure that the pattern L is present in G.
This can be represented by a graph morphism m : L→G,
called a match morphism. In general, match morphisms
are not inclusions. However, in Fig. 2 and in following
examples, for simplicity’s sake, we often choose inclu-
sions as match morphisms. Let us note H the resulting
graph obtained by applying a rule r : L←↩ K ↪→ R on G,
with the match morphism m : L→ G. The graph H is
built by means of two constructions of category theory,
called pushout. It consists in a commutative diagram
made of four morphisms. A diagram K → L, L→ G,
K→ D and D→ G is a pushout if K→ L→ G = K→
D → G (where the morphism composition is defined

component-wise) and if G is the least graph verifying
this property. The construction of H, ilustrated in Fig. 2,
is called a direct transformation and is usually denoted
by G⇒r,m H.

(L) (R)(K)
m (1st pushout) (2nd pushout)

1 2

3

5 6e
b
b

a

(G)

c

1 2

3

a

1 2

5 6e
b
b

(D)

c

1

5 e
b
b

(H)

c

1
4

a a

2

21 2

6

r:

4
a a

Fig. 2. A double pushout

Though, to apply the rule r on a graph G, it does not
suffice that the match morphism m : L→ G exists. The
so called dangling condition should also be verified, it
says that no node of m(L)\m(K) is linked to a node of
G\m(L). For example, in Fig. 3, the node 3 occurring
in the image of L by the morphism m is the source of
an edge whose target node 5 does not belong to m(L).
So, the remaining graph D obtained by removing m(L)
from G gets a dangling edge. As a direct consequence,
the resulting structure H inherits this dangling edge
and is not a graph. Thanks to the dangling condition,
such situations are precisely prevented and the resulting
graph H can be computed as follows (see Fig. 2). First,
D is obtained by removing all nodes and edges of
m(L)\m(K) from G. Then H is built as the disjoint union
of m(R) and D along m(K).

(L) (R)(K)
m

1 2

3

5 6e
b
b

a

(G)

c

1 2

3

a

1 2

5 6e
b
b
(D)

c

1

5 e
b
b
(H)

c

2

1 2

6
d dd

r:
1

4
a a 2

4
a a

Fig. 3. Dangling condition

In the sequel, we will mainly discuss about graph
transformation rules dedicated to manage operations on
generalized maps. By lack of space, we will skip the de-
tails of the rules application and thus, the double pushout
diagrams and the other theory category constructions
will be left implicit henceforth. For more details on these
aspects, the reader can consult [8].

2.2 G-maps

Generalized maps or G-maps characterize a topo-
logical model which presents the advantage of homo-

2

geneously dealing with all dimensions. Indeed, a G-
map is composed of basic elements, also called darts.
The G-maps represent objects of the quasi-manifolds’s
class. Classical topological cells as vertices, topological
edges or faces can be retrieved by splitting these objects
according to neighboring relations connecting darts:
an αi connection between two darts represents an i-
dimensional neighboring relation. The 2D object on
Fig. 4(a) is first split into faces (b) connected along
edges by α2 connections. Then these faces are split
into edges (c) connected by α1 connections. At last,
these topological edges are split into couples of darts
(d) linked by α0. Classically, G-maps are defined as an
algebraic structure [7], but G-maps are also particular
graphs whose nodes are darts and αi-labeled edges (or
αi edges, for short) models neighboring relations, with
0≤ i≤ n in the case of an n-dimensional object.

Let us notice that some loops appears in the examples

of Fig. 4(d). For instance, an α2 loop d
α2
−− d means that

the topological edge carried out by the dart d has no
proper neighbor of dimension 2 and thus represents a
border of the object which is not linked to another face.
Such a dart is said to be α2-free.

α0
α1
α2

(a)

(c)

(b)

(d)

Fig. 4. Cell decomposition of an object

Given a dart d of a G-map, we can compute the
topological cells from which it belongs as particular
subgraphs. For example, the face adjacent to a dart d
on a 2-G-map, is the subgraph which contains d, all
darts reachable from d using α0 and α1 edges, and
all corresponding edges themselves. More generally, an
orbit < αi, ...,α j > (d) is the subgraph which contains d,
all darts reachable from d using αi to α j-labeled edges,
and all of these edges. Thus, in 2-G-maps, vertices
are < α1,α2 >-typed orbits (or < α1,α2 > orbits, for
short). Formally, a graph is said to be < αi1 , . . . ,αik >-
typed when all of its edges are labeled in{αi1 , . . . ,αik}.
In the same manner, topological edges are < α0,α2 >
orbits and faces are < α0,α1 > orbits. More generally,
i-dimensional cells of an n-G-maps are modeled with
< α0, ...,αi−1,αi+1, ...,αn > orbits.

In the algebraic approach, consistency constraints
over generalized maps ensure the topological

consistency of modeled objects. As we choose to
interpret G-maps as a particular class of graphs,
we naturally translate these constraints in terms of
graph constraints. Thus, we define the G-maps this way :

Definition 1 (generalized map): A n-dimensional G-
map (n ≥ 0) is defined as a graph in which nodes
represent darts (and are not labeled), edges are labeled
in {α0, . . . ,αn} and such that:
Non oriented constraint: G is non oriented.
Adjacent edge constraint: each node is the source node
of exactly n+1 edges respectively labeled by α0, . . . ,αn.
Cycle constraint: for every αi and α j verifying
0 ≤ i ≤ i + 2 ≤ j ≤ n, there exists a cycle labeled by
αiα jαiα j starting from each node.

The cycle constraint ensures that G-maps precisely
define the class of quasi-manifolds. Indeed, this con-
straint guarantees that two i-cells can only be adjacent
along (i− 1)-cells. For instance, in the 2-G-maps of
Fig. 4(d), the α0α2α0α2 cycle implies that faces are
necessarily stuck along topological edges.

The G-maps can be manipulated by the means of
operations. Considering that an half-edge consists in
two α2-free darts connected by an α0 edge, let us first
consider a simple operation consisting in splitting an
half-edge in a 2-G-map. We can easily express this
operation by means of a graph transformation rule
(given in Fig. 5). Let us point out that the left-hand
side L is the matched pattern (two darts connected
by an α0 edge, and provided with α2 loops). The
right-hand side R is the new pattern introducing two
new darts so that a new vertex is created between the
two darts at the extremities. We can also remark that
nodes of R\K, wich are named respectively c and d,
have corresponding nodes in the resulting graph H
(also named c and d by inclusion matching). Let us
remark that on Fig. 5, the match morphism m satisfies
the dangling condition. Indeed, there is no node in
m(L)\m(K).

a c d ba b a b

m

c d

i j

e

g

f

h

a b

i j

e

g

f

h

a b

i j

e

g

f

h

a b

r:

(L) (R)(K)

(G) (H)(D)

Fig. 5. Rule for the splitting of half-edges and its application

3. G-MAPS TRANSFORMATION RULES

3.1 Orbit variables
In Section 2, we have seen that the double pushout ap-

proach of graph transformations allows us to write rules

3

which transform G-maps. Nevertheless, graph transfor-
mation rules are not expressive enough to translate usual
topological operations of G-maps into rules. Indeed,
for many operations, orbits play a decisive role in the
sense that their definition involves orbits in a generic
way. They are defined in terms of a given arbitrary
typed orbit, regardless of their structure (for instance
their number of nodes). Thus, in order to increase
the expressiveness of transformation rules in the con-
text of topological operations, we introduce specialised
variables which abstract the orbits and parameterize
our rules. We call them orbit variables [10], [9], [8].
Obviously, they will be typed accordingly to the type
of the required orbit. This introduction of dedicated
variables has been motivated by some previous works:
for example, in [4], it has been stressed that variables can
make rule-based systems more expressive and abstract.

1) Introduction of orbit variables: Let us illustrate
the notion of orbit variables by means of a classical
topological operation: the sewing operation. Intuitively,
the i-sewing operation sticks two i-dimensional topo-
logical cells along a common (i− 1)-dimensional cell.
In Fig. 6(a), we stick two cubes V1 and V1 along their
respective square faces F1 and F2. We obtain two cubes
which are stuck along a common square face F . Let us
remark that in order to apply this sewing operation, F1
and F2 must be isomorphic. Another example is given in
Fig. 6(b). Here, the same operation is used to stick two
prisms V1

′ and V2
′ along their respective triangular faces

F1
′ and F2

′. The resulting object consists in two prisms
which are stuck along a common triangular face F ′. In
this second example, F1

′ and F2
′ are also isomorphic.

The particular case of the 3-sewing along a square face

V1

F1

F2

V2

V1

V2

F

(a) Square faces

V1
�

V2
�F1

�

F2
�

V1
�

V2
�

F �

(b) Triangular faces

Fig. 6. 3-sewing of two volumes

in a 3-G-map may be translated into the rule illustrated
Fig. 7(a). In the left-hand side, two square half-faces1

are matched. They represent the half-faces F1 and F2
of Fig. 6(a). Let us remark that both of them are α3-
free since their darts have an adjacent α3-loop. It means

1In a 3-G-map, the < α0α1 >-typed orbits are called half-faces.

that in Fig. 6(a), V1 and V2 are not connected to another
volume, respectively along F1 and F2. In the right-hand
side of the rule, the two < α0,α1 >-typed orbits are
linked with α3. Thus, the right-hand side represents the
common face F of Fig. 6(a). Let us remark that this
first rule allows one to stick any two volumes, but only
along square faces. A new rule is required for the 3-
sewing along a triangular face. This second rule, which
is analogous to the first one, is illustrated in Fig. 7(b)
with triangular < α0α1 > orbits.

g h

c

e f

b

o p

k

m

l

n

i j

a d

g h

c

e f

b

o p

k

m

l

n

i j

a d

g h

c

e f

b

o p

k

m

l

n

i j

a d

(L) (K) (R)

(a) Square faces

a
b

c d
e

f

g h

i
k l

j

a
b

c d
e

f

g h

i
k l

j

a
b

c d
e

f

g h

i
k l

j

(L) (K) (R)

(b) Triangular faces

Fig. 7. 3-sewing rules

2) Transformation rules with orbit variables: We use
orbit variables in order to abstract the different isomor-
phic half-faces involved in the 3-sewing rules. Indeed,
in Fig. 7, each 3-sewing rule, respectively dedicated to
the square and triangular faces, contains six occurrences
of isomorphic half-faces: two in the left-hand side, two
in the interface and two in the right-hand side. We
factorize these two rules by replacing all occurrences of
isomorphic half-faces by a node labeled by a variable
orbit. The variable orbit is typed by < α0α1 > to indicate
that the variable should only be replaced by graphs
representing < α0α1 > orbits. Thanks to this variable-
based mechanism, we get a single graph transformation
rule for specifying the topological 3-sewing operation,
whatever the structure of the half-face along which the
two volumes are stuck. The rule with an < α0α1 >-
typed orbit variable F is given in Fig. 8. Orbit variables
label the nodes. Graphically, we represent them with a
grey-coloured region decorated with the variable and its
type. Let us remark that in the left-hand side of the rule,
as nodes 0 and 1 are labeled with the same variable F ,
they abstract two isomorphic copies of a same orbit. For
practical purposes, the instanciation of the rule consists
in substituting F by an < α0α1 >-typed orbit. Indeed,
the typing of orbit variables restricts the set of graphs
substituted to variables, to the ones generated by labels
of a given type (α0 and α1 in our example). From a
technical point of view, the interface can be either two
nodes labeled by the typed variable F < α0α1 > or

4

simply two unlabeled nodes, provided that names 0 and
1 are used to explicit the inclusion morphism. In the next
paragraph, we will emphasize that the application of a
generic rule involving orbit variables requires that some
nodes labeled by an orbit variable points on a dart of
the aimed G-map in order to be used as starting point to
build the match morphism between the left-hand side of
the rule and the G-map. We call these particular nodes
hooks and denote them within rules by a grey-coloured
region surrounded by an additional black ring. Thus, we
can see that in Fig. 8, both nodes of the left-hand side
are hooks.

F<α0α1>

α3

0

F<α0α1>

α3

1

F<α0α1>

0

F<α0α1>

1

F<α0α1>

α3

0

F<α0α1>

1

Fig. 8. The 3-sewing rule with an < α0α1 >-typed orbit variable

3) Application of generic rules: The application of
a graph transformation rule (without variables) first
requires to find a match morphism from the left-hand
side L of the rule towards the graph under transformation
G. Intuitively, the application of a generic rule (with
variables) requires two main steps. First, the construc-
tion of the isomorphic orbits present in the graph G
and intended to replace the nodes labeled by a variable
orbit. Then, the construction of the concrete graph
transformation rule (that is to say without variables)
derived by the replacement by the identified orbit of
the node labeled by an orbit variable in the generic rule.
To guide the construction of the concrete rule from the
generic rule and the match morphism, some nodes are
hooks which point on darts so that the orbits will be
searched only from these pointed darts by typical graph-
coverage algorithms2. In other words, hooks allow us to
restrict the search of both the orbit which replace the
variable orbit and the match morphism. Let us consider
Fig. 9 to illustrate this idea. On the figure, the node
a (resp. i) of the graph G corresponds to the hook 0
(resp. 1) of the left-hand side of the generic rule. In
practice, such a connexion will be initiated by the user
of the modeler by selecting particular darts on the initial
G-map (See Section 5 for more details). Based on this
starting point, the generic rule can be concretized by
considering the orbits < α0α1 > (a) and < α0α1 > (b)
belonging to the two volumes V1 and V2 present in
the G-map under transformation. Then, the < α0α1 >
orbit which is substituted to F is constructed starting

2Let us notice that in the particular case of G-maps, the search
for particular subgraphs (as the orbits) in a graph is simpler than in
the general case. Indeed, the particular labeling of edges allows us to
optimize the coverage algorithms.

from a and covering its neighbor darts using α0 and
α1 edges. Let us notice that as 0 and 1 are labeled
with the same orbit variable F , the constructed orbits
issued from a and i have to be isomorphic. Finally,
the derived concrete rule is isomorphic to the one of
Fig. 7(a) since the orbit variable F is substituted by a
square half-face. Hooks are convenient to define both
concrete rule and match morphism, and thus application
of generic rules.The selection of hooks in a generic rule
is left to the expertise of the designer.

a

c

b
d

f

h

ge

k

i

j
l

n

p

o
m

V1

V2

F<α0α1>

α3

0

F<α0α1>

α3

1

Fig. 9. The pointing system

3.2 Relabeling of orbit variables

The orbit variables allow us to translate the operations
in which several copies of a same orbit are handled into
a unique rule. However, in many classical topological
operations such as the cone, the extrusion, the triangu-
lation or even the rounding operation, we do not handle
direct copies of orbits, but orbits modified by relabeling
or removing edges. So, in order to cope with these
operations, we introduce relabeling of orbit variables
in our rules.

1) Requirement of orbit variables relabeling:
Let us illustrate the relabeling of orbit variables
with the triangulation of a face. For instance, in
Fig. 10(a), starting from a face F , the application of
the triangulation produces four triangles T1, T2, T3 and
T4. In Fig. 10(b), this example is illustrated in the case
of 2-G-maps. The starting face is represented on the
left-hand side by the grey-coloured < α0α1 >-typed
orbit F . On the right-hand side, F is duplicated into
three grey-coloured subgraphs F0, F1 and F2. In F0, the
α1 edges of F are removed while the α0 edges remain.
In F1, the α0 edges are removed and the α1 edges are
relabeled into α2 ones. In the last copy F2, α0 and α1
are respectively relabeled into α1 and α2. Finally, the
triangles T1, T2, T3 and T4 of Fig. 10(a) are modelled
by, respectively, orbits < α0α1 > (a1), < α0α1 > (d1),
< α0α1 > (h1) and < α0α1 > (e1). We denote the
relabeling of orbit variables as follows. The function
< γ1...γk >:< β1...βk >→< γ1...γk > renames the labels
βi into γi (with 1 ≤ i ≤ k) in < β1...βk >-typed orbits.

5

F

T1

T2

T3

T4

(a)

g0 h0

c0

e0

d0

f0

a0 b0

g0 h0

c0

e0

d0

f0

a0 b0

g2
h2

c2e2
d2f2

a2 b2

g1 h1

c1

e1

d1

f1

a1 b1
F0

F1

F2

F

(b)

Fig. 10. A triangulation

Moreover, if γi is the removing label ” ”, the edges
labeled with βi are removed. In our example, with F
a < α0α1 >-typed variable, we have F0 =< α0 > (F)
with < α0 >:< α0α1 >→< α0 >. Similarly,
F1 =< α2 > (F) with < α2 >:< α0α1 >→< α2 >
and finally F2 =< α1α2 > (F) with < α1α2 >:<
α0α1 >→< α1α2 >.

2) Transformation rules with relabeling of orbit vari-
able : The introduction of relabeling functions in our
rules allows us to translate the triangulation into the rule
of Fig. 11. This rule is general in the sense that it can be
used in order to triangulate any face in a 2-G-map. The
rule involves an < α0α1 > orbit variable F . In the left-
hand side of the rule, the hook 0 abstracts the < α0α1 >
orbit F of Fig 10(b). In the right-hand side of the rule,
the nodes 0, 1 and 2 respectively abstract the three copies
F0, F1 and F2, respectively labeled with the previously
introduced relabeling functions < α0 >, < α2 > and
< α1α2 >. Thus, the triangulation rule matches an
< α0α1 > orbit (the face of the pointed dart in the G-
map associated to the hook 0) and replaces it by three
relabeled copies pairwise connected with α1 and α0
edges. Indeed, let us remark that in Fig. 10(b), the nodes
of F0 (respectively F1) are connected to corresponding
nodes in F1 (respectively F2) with α1 (respectively α0)
edges. Thus, in the right-hand side of the rule, the nodes
0 and 1 are linked by an α1 edge. Similarly, the nodes 1
and 2 are linked by an α0 edge. Finally, by associating
to the hook a dart which carries a square face, we get
the concrete rule depicted in Fig. 12.

F<α0_> F<_α2> F<α1α2>α1 α0
0 0 1 2

F<α0α1>

0

Fig. 11. The triangulation rule with relabelings of an orbit variable F

g0 h0

c0

e0

d0

f0

a0 b0

g0 h0

c0

e0

d0

f0

a0 b0

g2
h2

c2e2
d2f2

a2 b2

g1 h1

c1

e1

d1

f1

a1 b1

g0 h0

c0

e0

d0

f0

a0 b0

(L) (K) (R)

Fig. 12. Instanciation of the triangulation rule with a square face

3.3 Additionnal operations

We illustrate our language with four operations: the
cone, the extrusion, the rounding and the removal.

1) The cone and the extrusion: Both cone and extru-
sion operations consist in creating an (i+1)-dimensional
cell from an i-dimensional one. In Fig. 13(a), the ap-
plication of a cone operation on a triangular face F
produces a tetrahedron. The corresponding rule in the
3-G-maps is illustrated in Fig. 13(c). It matches an
< α0α1 >-typed α3-free half-face and replaces it with
one isomorphic copy (see node 0 in the right-hand side)
and three relabeled copies (see nodes 1 to 3). Intuitively,
the node 0 of the right-hand side abstracts the bottom
face F of Fig. 13(a) while the node 3 abstracts the top
vertex F3. The principle of the extrusion operation is
analogous. In Fig. 13(b), a prism is produced from a
triangular face F ′. The corresponding rule for 3-G-maps
is illustrated in Fig. 13(d).

F F0

F3

(a) A cone

F � F0
�

F5
�

(b) An extrusion

α3 α3α2 α3

F<α0α1> F<α0_> F<_α2>α2 α1
0 0 1 2

F<α0α1>

0

F<α1α2>α0
3

(c) The rule of a cone from a face

α3 α3α2 α3

F<α0α1> F<α0_> F<_α2>α2 α1
0 0 1 2

F<α0α1>

0

F<_α2>α0
3

α3

F<α0_>α1
4

α3

F<α0α1>α2
5

(d) The rule of an extrusion from a face

Fig. 13. The cone and the extrusion

2) The rounding: Intuitively, the rouding operation
produces a soft object from an angular one. In Fig. 14(a),
the application of the rouding operation on a vertex S of
a cube produces a face S2 in the place of S. In the case
of 3-G-maps, the rounding of a vertex can be translated
in the rule of Fig. 14(b). An < α1α2α3 > orbit, like the
vertex S of Fig. 14(a) can be associated to the orbite
variable labeling the hook of the left-hand side of the
rule. This orbit is replaced with three relabeled copies.
Intuitively, the node 2 abstracts the face S2 created

6

during the rounding operation on S.

S
S2

(a) The rounding of a vertex

α3

S<_α2α3> S<α0_α3> S<α0α1_>α1 α2
0 0 1 2

S<α1α2α3>

0

(b) The rounding of a vertex rule

Fig. 14. The rounding

3) The removal: The removal operation allows ones
to remove an (i−1)-cell which connects two i-cells. In
Fig. 15(a), the removal operation is applied on a face
F which connects two cubes. The rule of the removal
of a face in a 3-G-map is illustrated in Fig. 15(b).
Intuitively, in the left-hand side of the rule, the nodes 1
and 2 connected with an α3 edge abstract the face F .
Indeed, a face is constituted by two half-faces (one is
abstracted by 1 while the other one is abstracted by 2)
connected with α3 edges. The node 0 (resp. 3) abstracts
the darts of one of the cubes connected to F (resp. the
other cube connected to F). In the right-hand side of
the rule, the nodes 1 and 2, and so the face F , have
been removed. Thus, the darts which in the cubes, were
initially connected to F , are now pairwise connected.
Let us remark that hook must be labeled with a full
orbit, without any ”remove” label .

F

(a) The removal of a face

F<α0_>

0

F<α0α1>

1

F<α0α1>

2

F<α0_>

3 0 3

F<α0_>

0

F<α0_>

3
α2 α3 α2 α2

(b) The rule of a face removal

Fig. 15. The face removal

4. G-MAP TRANSFORMATION RULES CONSTRAINTS

Usually, the definition of a new operation implies two
mandatory verifications. The first one is the verification
of its mathematical definition. It consists in proving that
the consistency constraints of the G-maps are preserved
by the operation. This proof is generally done manu-
ally for each operation. The second verification deals
with the implementation of the operation. It consists

in testing that the program correctly implements the
operation without any side effect. Generally, many tests
are performed on a large set of entries objects. The main
advantage of our rule approach is that these verifications
become immediate. As a rule definition is also an
implementation of an operation, we only need to check
that rules preserve the G-maps constraints.

For this prupose, [8] introduces syntactic criteria on
rules. These criteria are shortly presented here and their
full definition can be consulted in [8]. A correct rule
must satisfy the three following criteria, corresponding
to the G-maps consistency constraints :
• Non-orientation criterion;
• Adjacent edges criterion;
• Cycles criterion.
As these criteria are syntactic, their verification can

be done both automatically and statically. So, a full
modeler kernel based on rules should not only provide a
function to apply rules but also a function to check the
rules syntax, according to these three previous criteria.
The main advantage of these syntactic criteria stays in
their genericity. Indeed, they are common to every G-
map transformation rules. Thus, while in the classical
approach a proof was required for every operations, here,
the only program that must be proved or tested is the
one which checks and applies our rules.

4.1 Non-orientation criterion

As G-maps are non-oriented graphs, the applica-
tion of rules on a G-map must also produce a non-
oriented graph. So, intuitively, the non-orientation cri-
terion means that, on a rule r : L←↩ K ↪→ R, both L, K
and R are non-oriented graphs.

4.2 Adjacent edges criterion

In n-G-maps, the adjacent edges constraint means that
each node has exactly n+1 adjacent edges respectively
labeled with α0 to αn. In order to preserve this con-
straint, rules must satisfy the following properties:
• Nodes of the kernel K must have adjacent edges

with the same labels on both the left-hand side and
right-hand side of the rule. For example, in Fig. 12,
a0 has two adjacent edges labeled with α0 and α1
in the left-hand and right-hand sides.

• The removed nodes of L\K and the added nodes
of R\K must have exactly n + 1 adjacent edges
respectively labeled with α0 to αn. For instance,
in Fig. 12, the nodes a1 and a2 have their three α0,
α1 and α2-labeled adjacent edges.

In order to extend these properties on generic rules
with relabeling functions, like the one in Fig. 11, edges
labels and relabeling functions labels must be considered
in the same manner. Indeed, the relabeling functions
labels of a given node can be seen as implicit adjacent
edges of this node. Let us notice that considering this
extension, the node 0 of the rule of Fig. 11 satisfies
the first property: in the left-hand side, the node 0 has

7

two implicit α0 and α1-labeled adjacent edges while
in the right-hand side, he has one implicit α0-labeled
adjacent edge and one explicit α1-labeled edge. In the
same manner, the added nodes 1 and 2 satisfy the second
property: they have their three α0, α1 and α2-labeled
adjacent edges, implicitly or explicitly.

4.3 Cycles criterion

Intuitively, this syntactic criterion guarantees the cycle
constraint of n-G-map: for 0 ≤ i ≤ i + 2 ≤ j ≤ n ev-
ery dart belongs to an αiα jαiα j-labeled cycle. As the
adjacent edges constraint, it is divided into properties
depending on the considered sets of darts:
• A added dart of R\K must be added with all of

its cycles. For example, the nodes a1 and a2 of the
rule of Fig. 12 belong to α0α2α0α2-labeled cycles.

• If a preserved dart of K belongs to a fully matched
αiα jαiα j-labeled cycle in the left-hand side of the
rule, it must belong to an αiα jαiα j-labeled cycle
in the right-hand side too.

• If a preserved dart of K belong to an αiα jαiα j-
labeled cycle which is not fully matched, its αi
and α j-labeled edges are preserved. Intuitively, this
means that some of the cycle edges are matched
in the left-hand side while the other ones are not
matched. Thus, modifying the matched edges could
lead to a break of the cycle. For example, in Fig. 12,
the α0α2α0α2-labeled cycle of node a0 is partially
matched in the left-hand side (only α0 is matched).
So, in order to avoid the breaking of the existing
cycle, this α0-labeled edge must not be modified in
the right-hand side.

As previously, this properties are extended to generic
rules with relabeling functions by considering in the
same manner both explicit and implicit edges.

5. A RULE APPLICATION KERNEL

One of our objectives about rule-based transforma-
tions is to propose a new approach to develop geometric
modeler software. As topological operations can be
formally defined by rules, a program that can apply any
rule can compute operations. In this section, a such pro-
gram is presented. The chosen implementation language
is OCaml [5] mainly because our formalism is well
adapted to this language. Nevertheless, the presented
data structures and algorithms can be easily translated
into any programming language.

5.1 Rules syntax

The classical rule representation r : L ←↩ K ↪→ R
formally defines a transformation. Thus, it is useful
for proofs writing. In the sequel, we use a simplified
notation by replacing L←↩ K ↪→ R by L→ R. As we
represent inclusions morphisms by the means of nodes
names, the interface K is implicitly defined by the
intersection L∩R of L and R. Thus, local transformations

and preserved nodes are constructively specified by the
partial function L→ R which includes relabeling. The
darts in the set L\R are removed and those in R\L are
added. For example, a face triangulation in a 3-G-map
is defined by the rule given on Fig. 16. The used syntax
remains similar, the hooks are again represented by a
double border node.

F<α0_α3> F<_α2α3> F<α1α2α3>α2 α1
0 1 2

F<α0α1α3>

0

Fig. 16. Triangulation of a face rule (L→ R notation)

As a convention, the nodes are named using suc-
cessive integers starting from 0 in the two hand-sides
of the rule. Hence, we get a useful way to use this
node indexing as indexes of arrays in the algorithm that
implement node application. So, as the partial function
L→ R specifies dart preservation, it also indicates how
nodes are renamed. This is noted under the function
arrow, as it is the case for the face removal rule (see
Fig. 17) where it is indicated that node 3 is renamed
into node 1.

F<α0_> F<α0_>F<α0_> F<α0α1> F<α0α1> F<α0_> α2α2 α2α3
0 10 1 2 3 3➝1

0➝0

Fig. 17. Removal of a face (L→ R notation)

The graphical syntax used to present the rules is
translated into an OCaml data type, see Fig. 18. The
first field, left_hooks, is the list of indexes of nodes
of the left-hand side of the rule that are hooks. For
example, for the triangulation rule (see Fig. 16) this
list contains the index 0 and for the removal rule (see
Fig. 17) this list contains the index 1. Another example
is the sewing rule that have two hooks and then the
list contains two indexes. The field left_nodes is
an array such that its indexed by names of the nodes.
It is the array of the orbit types of left abstract nodes.
For example, for the triangulation rule (see Fig. 16),
this array should has only one element that is a list of
the link labels 0, 1 and 3. For the particular ”remove”
label (denoted previously), we use the value −1. The
field left_edges is the list of the explicit edges
between the nodes. These edges are noted by a triple
as (source name, target name, label). For example,
the α2 connection between the nodes 0 and 1 of the
removal rule (Fig. 17) is defined by (0,1,2). The
field nodes_matching defines the partial function
that maps node names between the left-hand side and
the right hand side of the rule. This is done using an
array indexed by names of nodes in the left-hand side
of the rule and where values are the new node names
in the right hand side. The field right_nodes is the
orbit types that label nodes in the right-hand side of the
rule. If the type of a preserved node is different than

8

the type it have in the left_ nodes array field, this
means that it is relabeled. The field right_edges is
the list of the explicit edges in the right-hand side of
the rule with the same notation as previously. Using this
rule presentation, the algorithm described in section 5.3
computes the result of a rule application.

type t_rule = {
left_hooks : int list;
left_nodes : (int list) array;
left_edges : (int * int * int) list;
nodes_matching : int array;
right_nodes : (int list) array;
right_edges : (int * int * int) list;
right_ebd_fun : t_ebd_fun array;}

Fig. 18. OCaml type of rules

In order to get a visualization of objects before and
after an operation application, basic pieces of geometric
information are needed. Hence, a G-map must have
an embedding. The simplest way to define a G-map
embedding is to associate points to vertexes (i.e. 0-cell
orbits). Then, to visualize a 2-G-map or a 3-G-map, 3D
points can be associated to darts. In order to manage this
simple embedding, expressions are given for each node
of the rule right hand side. These expressions define
embeddings of vertexes obtained after rule application
from the original embeddings. Embedding expressions
can be seen as added labels to nodes of the right hand-
side. For example, the face extrusion rule on Fig. 19 is
presented with embedding expressions.

α2

F<α0α1>

0
0➝0

α3 α3 α3

F<α0α1> F<α0_> F<_α2>α2 α1

0 1 2

F<_α2>α0

3

α3

F<α0_>α1

4

α3

F<α0α1>α2

5
ebd(0) ebd(0)+V➝

Fig. 19. Extrusion of a face with embeddings

In this rule, the expression ebd(0) specify the
embedding of each concrete copie of the node 0. And
the embeddings of the created darts (concrete copies of
node 3) are computed as matched points translated by
a vector ~V . The Fig. 19 also shows that the embed-
ding expression is not repeated when several abstract
nodes share a same vertex orbit. Hence, the expression
ebd(0) defines the embedding of nodes 0, 1 and 2
and the expression ebd(0)+V defines the embedding
of nodes 3, 4 and 5. Actually, this syntax provides a
good way to optimize computation of the embedding.
To complete the data type description, the extrusion rule
of a face (Fig. 19) is written in Fig. 20 with the OCaml
data type defined in Fig. 18.

From a practical point of view the expressions lan-
guage is independent from the topological rules. The
operators in these expressions depends of the chosen em-
bedding and the needs of the application. For example,
in the face triangulation rule (see Fig. 16), the barycenter
of the face must be computed. To do that, two operators
are defined. The first one collects the embeddings of
a specified orbit from a given node. The second one

l e t face_extrusion = {
let_hooks = [0];
left_nodes = [|[0;1]|];
left_edges = [(0,0,2)];
node_matching = [|0|];
right_nodes = [|[0;1];[0;-1];[-1;2];[-1;2];[0;-1];[0;1]|];
right_edges = [(0,1,2);(1,2,1);(2,3,0);(3,4,1);(4,5,2)];
right_ebd_fun = [ebd 0;none;none;(ebd 0)+V;none;none]}

Fig. 20. OCaml rule of the extrusion of a face

computes the barycenter of a set of points. Then the
barycenter of the face is defined by the expression
mean(collect_edb(face_orbit,0)).

5.2 Implementation of G-map

Before describing the algorithm which applies our
rules, let us introduce our G-map implementation. It
consists in a G-map data type associated to the following
minimal set of functions:
• Creation and removal of a free dart, i. e. a dart

which is not connected to another dart;
• Orbit covering operation;
• Vertex embedding setting. It defines the embedding

for each dart of a given vertex orbit.
It should be noticed that two classical G-map building

operations are not listed, cell sewing and cell unsewing
operations. Actually, as seen previously, they are defined
by rules and then they are implemented as all other
operations provided with a rule-based definition.

As rules can be defined for G-maps of any dimen-
sion, our implementation is parameterized by G-map
dimension. Then, the embedding type must also be a
parameter. For example, 2-G-map embeddings could be
2D points or 3D ones.

Vertex embedding is implemented in such a way that
only one dart (the carrier) of the vertex orbit refers
to the embedding. The other darts have access to the
embedding through a chain of indirections (see Fig. 21).

B

A

D

C

(a) Two face borders

B

A

(b) After the sewing
of the faces

B

A

(c) After getting
darts’s embedding

Fig. 21. Chaining of the embedding

For example, on Fig. 21(b), two darts directly refer
to their embedding and the others use indirections to
get the embedding. Hence, construction operations do
not have to traverse the vertex orbit to update the
embedding when vertexes are unified. The example

9

on Fig. 21 shows embeddings management when two
edges are sewed, only the carrier darts of one edge
must be updated. Moreover, the chain of indirections
to an embedding can be lazily reduced during reading
operations. It is sufficient to affect the dart resulting
from a reading operation to the dart from where the
reading operation was called. Hence, direct references
to embedding could be obtained after some reading
operations (see Fig. 21(c)).

5.3 Rule application function

In this section, we introduce the algorithm which
applies the rules to a given G-map. Some steps of
this algorithm are illustrated Fig. 22 in the case of the
face triangulation rule Fig. 16 applied to the square
Fig. 10(b). The input of a rule application consists in an
association of each hook of the left-hand side to a dart
of the start G-map. Then, we use the covering function
of G-maps in order to reach every darts matched by
the hook. The other darts matched by the rule are reach
from previous darts using the edges of the left-hand side
which connect hooks to the other nodes. For example,
in the face removal rule (Fig. 17), the darts matched
by the hook 1 are first reached by a coverage of the
orbit < α0α1 > from an input dart given to the rule
application. The darts matched by nodes 0,2 and 3 are
reached using the edges of the rule. For example, the
darts matched by the node 0 are the α2 neighbors of
the darts identified with the coverage of hook 1. In the
case of the triangulation Fig. 10(b), the result of this
identification process is depicted by the 2D table of dart
labels Fig. 22(a). Each column of the table represents an
abstract node and two darts of the same line are copies
of a same dart of the orbit.

right nodes

0
c0
a0
b0
d0
f0
h0
g0
e0

#0

#0
#1

#1
#2

#2
#3

#3

0
c0
a0
b0
d0
f0
h0
g0
e0

#0

#0
#1

#1
#2

#2
#3

#3

1
c1
a1
b1
d1
f1
h1
g1
e1

#4

#5
#6

#7
#8

#9
#10

#11

2
c0
a0
b0
d0
f0
h0
g0
e0

#12

#13
#14

#15
#16

#17
#18

#19

0
c0
a0
b0
d0
f0
h0
g0
e0

#0

#0
#1

#1
#2

#2
#3

#3

1
c1
a1
b1
d1
f1
h1
g1
e1

#4

#4
#6

#6
#8

#8
#10

#10

2
c0
a0
b0
d0
f0
h0
g0
e0

#12

#12
#12

#12
#12

#12
#12

#12

A#0

#1
#2
#3

B
C
D

right nodesleft nodes vertices
A#0

#1
#2
#3

B
C
D

vertices

#4 ?
?#5

#6
#7
#8

?
?
?

#9 ?

?#10
#11
#12
#13

?
?
?

#14 ?
?#15

#16
#17
#18

?
?
?

#19 ?

A#0
#1
#2
#3

B
C
D

vertices

#4 ?
?#6

#8
#10
#12

?
?
?

right nodes
0

c0
a0
b0
d0
f0
h0
g0
e0

#0

#0
#1

#1
#2

#2
#3

#3

1
c1
a1
b1
d1
f1
h1
g1
e1

#0

#0
#1

#1
#2

#2
#3

#3

2
c0
a0
b0
d0
f0
h0
g0
e0

#12

#12
#12

#12
#12

#12
#12

#12

A#0
#1
#2
#3

B
C
D

vertices

E#12

(b)

(d)(c)

(a)

Fig. 22. Application of the triangulation rule

In the second step the equivalent array for the right
hand side of the rule is constructed. To do that, columns
(abstract nodes) that are preserved by the rule appli-
cation are reused and placed at the correct new array
index using the array of morphism’s node matching.
For the added nodes, columns corresponding to new
darts are created using new labels. At this point, these

new darts are disconnected from the others and have no
embedding. The darts that are reused continue to have
their connections and their embedding. For example,
using the triangulation rule from the array of darts of
Fig. 22(a), the array corresponding to the right-hand side
is showed on Fig. 22(b). We can see that every new dart
refers to an undefined embedding.

Now, the new darts are relabeled using the links
determined by the first hook in the following way. For a
dart d at the line i of node that has a relabeling αh→αk,
we get the neighbor by αk of the dart at the same line i
of the hook. Then we get the index j of this neighbor.
To avoid combinatorial explosion, this is done with a
hash table that associates each dart of the hook with its
line index. At last, the new neighbor of d is the dart
in the same column at the line j. As a consequence
of these new links, some embeddings are shared. On
Fig. 22(c), paired darts belonging to the node 1 share
their embedding, and all the darts belonging to the node
2 share the same embedding. Then, darts are linked with
the explicitly given edges that appear in the right-hand
side of the rule. Hence, for an edge (i, j,k), all the darts
of the column i are linked, line by line, to the darts of
column j by the link αk. Hence, some other darts share
their embedding.

In the next step new vertexes are computed. If the
embedding of a dart is not defined, it is computed
using the embedding function of the corresponding
node named by index. The sharing of the embedding
minimizes the number of new vertexes computations. At
last, we compute the transformations of already existent
vertices. Finishing by these already existent vertices, we
prevent to distort the computation of the new vertices.
Now, all edges explicitly given by the left-hand side of
the rule are removed and darts belonging to removed
nodes are deleted. Then, darts belonging to preserved
nodes are relabeled the same way that the new darts
before. Finally, the preserved darts are connected to the
new darts using the edges explicitly given in the right-
hand side of the rule. Again, embeddings are shared. For
example, in Fig. 22(d), the darts a1, . . . ,h1 at the border
of the created part get their embedding from the darts
of the original face a0, . . . ,h0.

6. RESULTS

6.1 Prototyping a 3D modeler

In this section, two case studies of our rule-based
kernel are presented. The first one illustrates the frame-
work independence of the G-map dimension. To show
that, a fractal object computation with a 2-G-map is
done. As we use G-maps, 2D fractals that can be
modeled with quasi-manifolds have been chosen. As
fractals are usually defined by rules, the design of
fractals is straightforward in our framework. Thus, for
instance, Sierpinski’s carpet depicted in Fig. 23 can be
easily computed. First, the external square is obtained by
inserting a vertex whose orbit is a single dart. This vertex
is then extruded to an edge and after to a face using

10

extrusion rules. And, the carpet is computed from the
square with four successive applications of a dedicated
rule.

Fig. 23. A 2D fractal computed with rules on a 2-G-maps

The second case study of our kernel prototypes a 3D
modeler. Now, our kernel is parametrized to be used
with 3-G-maps embedded by 3D points. This modeler
is easily extendible because all its operations are defined
by rules. When the applications starts, the rules are
loaded and the consistency constraints are checked for
each rule. So, operations (defined by rules) can be added
to the modeler without recompiling it. The syntax to
define rules in the file is similar to the OCaml rule syntax
described previously. For example, the type of an orbit
< α0,α2, > is noted by 02_ instead of the full OCaml
syntax [0;2;-1].

The modeler main window is an OpenGL view of
the embedded G-map. All the loaded rules are listed
in a Glut menu. Choosing one rule of the list applies
it to the list of selected darts. For example, the object
on Fig. 24(a) was obtained in the following way: add a
single dart vertex; extrude it to an edge; create a triangle
using the cone operation from edge; create a tetrahedron
using the cone operation from face; round the edges and
vertexes. The dart selection is done with mouse picking
in the OpenGL view. This is a convenient way to indicate
darts that are associated to each hook of a rule. The order
of the selection gives the position in the list of hooks.
For example, on Fig. 24(b), the two volumes are sewed
in the following: a first left click give the dart for the
first hook; a second left click give the dart for the second
hook; a right click open the menu where the sewing rule
by α3 can be chosen.

(a) A rounded tetrahedron (b) α3sewing

Fig. 24. The 3D modeler prototype

6.2 Prototyping operations

The main objective of the rules was to provide an
easy and efficient way to define and implement op-
erations. All the usual topologically-based operations
on G-maps were defined with rules: sewing, unsewing,
cone operations, extrusions, triangulations, full and dug
vertex rounding, full and dug generalized rounding,
subdivisions, removals, expansions and contractions.
Moreover, some simple more involved operations were
also prototyped. For example, on Fig. 25(a), an operation
that thicks the surfaces of an object was defined by a
rule3. Another example is an operation that compute a
volume outline of an object4.

(a) Thicken of a surface

(b) Volume outline of an object

Fig. 25. Easily prototyped operations

Rules that computes 2D fractal objects can also be
extended to compute 3D fractal objects. For example,
the rule to compute the Menger sponge is given on
figure 26(a) (the labels αi are noted i to be short).
Application of this rule is shown on figure 26(b). Even if
this operation is complex only about fourty minutes were
needed to define it. This information is an indication of
the ”designing cost”. Such information could be used to
estimate the difficulty to design operations using rules.

6.3 Efficiency

To validate our approach, some results obtained by
our modeler kernel are presented. These results are com-
pared with a topology-based modeler called Moka [11]
that uses 3-G-maps. As Moka is 3D dedicated applica-
tion written in C++, its operations have been developed
following conventional methods and have been carefully
optimized. From another side, our kernel is generic in
dimension (i.e. parametrized by the G-map dimension)
and the operations could not be optimized because
their implementation results from a unique function

3This operation can be used to quickly design walls of a building.
4This operation can be used to quickly design a windows from a

regular grid.

11

G<0123> G<_123> G<__23> G<___3> G<_1_3>

G<__1_> G<____> G<_2__> G<_21_>

G<__1_> G<____> G<____> G<__1_>

G<___3> G<___3> G<____> G<____>

G<0_23> G<0__3> G<0___> G<0_2_>

0 1 0

0 1 0

0 1 0

0 0

2

2 2

3 3 3 3

2 2 2 2

1111

3 3

3 3

0➝0

4 5 6 7

8 9 10 11

12 13 14 15

16 17 18 19

0 1 2 30

(a) Menger sponge rule

(b) Menger sponge operation result

Fig. 26. A complex operation: Menger sponge

that applies all rules. Considering this comparison, it
could be noticed that important gains in development
time have been obtained with an acceptable loss of
performances. In the study below, computing times and
length of program operation codes are both compared.

Results about computing times are first discussed.
The table 1 presents computing times of operations on
objects of different sizes. The object size is computed
in number of darts. Test objects have realistic sizes as
they are made of several thousands of darts, even several
thousand hundreds of darts. Observation of the results
shows that computation times obtained by our approach
are in the same order of complexity than Moka. For ex-
ample, the volume triangulation operation that have been
tested with volume made of various numbers of faces
and also different face degrees (triangles or squares) are
in a constant ratio (approximately 3.5) with the operation
implemented in Moka. The face triangulation operation
that have been tested with objects made of faces with
various degrees is also in a constant ratio (approximately
2.1) with the operation implemented in Moka.

Comparison has also be made for more complex op-
erations as topological rounding of edges and vertexes.
Objects containing various numbers of volumes were
used. Computation times have also the same complexity
as those obtained with Moka. The obtained results show
that our kernel is faster but this is because the rounding
operations in Moka have a geometrical part that is not
considered in our kernel. Future works have to extend
the rules to take this geometric part into account.

Last operations that are considered are sewing and un-
sewing by α3. Again, these operations have been tested
with various face degrees. In that case, Moka and our
kernel have different strategies to deal with the embed-
ding. In our kernel, every dart refers to the embedding

TABLE 1
TIME EFFICIENCY COMPARISON

Operation Number of darts Moka Prot. Ratio
Face 32768→ 98304 0.09 s 0.19 s ×2.11
triangulation 65536→ 196608 0.19 s 0.37 s ×1.95

262144→ 786432 0.71 s 1.58 s ×2.23
Volume 12288→ 49152 0.03 s 0.10 s ×3.33
triangulation 49152→ 196608 0.13 s 0.48 s ×3.69

196608→ 786432 0.60 s 2.18 s ×3.63
Dug edges 3072→ 12288 0.08 s 0.05 s ×0.63
and vertices 24576→ 98304 0.72 s 0.46 s ×0.64
rounding 196608→ 786432 5.79 s 3.96 s ×0.68
Full edges 3072→ 12288 0.14 s 0.06 s ×0.42
and vertices 24576→ 98304 1.17 s 0.61 s ×0.52
rounding 196608→ 786432 9.01 s 5.63 s ×0.62
α3 sewing 65536 0.22 s 0.19 s ×0.86

131072 0.43 s 0.39 s ×0.91
262144 0.91 s 0.83 s ×0.91

α3 unsewing 65536 0.22 s 0.19 s ×1.16
131072 0.43 s 0.51 s ×1.19
262144 0.86 s 1.00 s ×1.16

using the previously described strategy. Conversely, in
Moka, the embedding is referenced by only one dart per
vertex orbit. For the sewing operation, the better results
are obtained by our kernel. This is because embedding
sharing is quicker. In the two applications, when two
vertexes are sewed, only one of the two carrier darts
need to have its embedding reference updated. After the
operation, in our kernel, updated carrier dart refers to the
sewed dart and, in Moka, updated carrier dart refers to
empty embedding. But in our case, the carriers darts are
directly known through the references chain and they
have to be found with a covering operation in Moka.
For the unsewing operation, our kernel takes more time.
This is a dual consequence of the embedding sharing
strategy. To unsew, vertex orbits must be split in two.
Two embedding references must be defined. One is kept
from original vertex orbit and the other must be defined.
In our kernel, the embedding reference of all the darts of
the new vertex orbit has to be changed. In Moka, only
one dart in the new vertex orbit has to be updated as a
carrier dart.

These preliminary results are very encouraging and
studies must be conducted to better understand the
complexity of computation times obtained by our ap-
proach. These performances should be related to the
small number of code lines that are needed to program
our kernel. Actually, our kernel is 700 OCaml lines long,
including the 200 lines that program the application
of a rule. In the loaded file that contains operation
definitions, one operation definition takes one or two
lines. In Moka’s kernel, each of the operations is 100 to
300 lines long and the whole kernel is about 30000 lines.
Moreover, with the classical development approach, all
these lines must be tested and validated. Applications
like Moka generally take several years to be developed.
From another side, our prototype had been developed
during approximately seven weeks, and the major part
of time was dedicated to deal with the OpenGL library.
The amount of efforts needed to develop software is

12

always evaluated with difficulty but with no doubt our
first estimations show that the rule approach provides
a very convenient and quick way to develop a kernel
modeler and to prototype new operations, even if our
kernel is not a complete modeler.

7. CONCLUSION

In this article we have proposed a rule-based lan-
guage for specifying topological operations on n-G-
maps. Based on graph transformation, our rules include
variables to generically denote orbits and relabeling
functions which allow us to relabel orbits. These features
are useful for most of the topological operations, for
instance triangulation, cone, extrusion or even rounding
operation. Our rules are defined according to a formal
and graphical syntax which makes our specifications
both clear, concise and easy to write. Moreover, we give
syntactic criteria on rules which ensure that rules appli-
cation preserves the topological consistency constraints
of the G-maps.

We have designed a prototype which consists in a
rule-based kernel of a topology-based modeler. Our tool
can be seen as a rule-application engine dedicated to
our G-map transformation rules. Thanks to syntactic
criteria of rules, we ensure the topological consistency of
designed G-maps. We have shown that the benefits of
a rule-based approach are unquestionable. First of all,
the efficiency of our prototype is comparable to other
topology-based modelers based on G-maps. Moreover,
operations are quickly designed and implemented and
last but not least, the prototype is easily and safely
extendible.

Our work will be extended by taking into account
geometric embeddings in our rule-based framework.
First of all, we are going to formally associate a poly-
hedric geometry to vertices (i. e. 0-dimensional cells of
objects). Such a feature will allow us to define geometric
operations, such as Boolean operations, which require
geometric preconditions to be applied. We also plan to
develop a graphical editor for our rules. Such a graphical
interface will be useful to help designers in the writing
process of new rules.

REFERENCES

[1] T. Bellet, M. Poudret, A. Arnould, L. Fuchs, and P. Le Gall.
Designing a topological modeler kernel: a rule-based approach.
Research Notes 2009-1, XLIM-SIC, UMR CNRS 6172, Univer-
sity of Poitiers, December 2009.

[2] H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamentals
of Algebraic Graph Transformation (Monographs in Theoretical
Computer Science. An EATCS Series). Springer-Verlag New
York, Inc. Secaucus, NJ, USA, 2006.

[3] A. Habel and D. Plump. Relabelling in graph transformation.
Lecture notes in computer science, pages 135–147, 2002.

[4] B. Hoffmann. Graph transformation with variables. Formal
Methods in Software and System Modeling, 3393:101–115, 2005.

[5] INRIA. The Ocaml Language. http://www.ocaml.org.
[6] P. Lienhardt. Subdivision of n-dimensional spaces and n-

dimensional generalized maps. In Annual Symposium on Com-
putational Geometry SCG’89, pages 228–236, Saarbruchen, Ger-
many, Juin 1989. ACM Press.

[7] P. Lienhardt. Topological models for boundary representation :
a comparison with n-dimensional generalized maps. Computer-
Aided Design, 23(1):59–82, jan 1991.

[8] M. Poudret. Transformations de graphes pour les opérations
topologiques en modélisation géométrique, Application à l’étude
de la dynamique de l’appareil de Golgi. Thèse, Université
d’Évry val d’Essonne, Programme Epigénomique, October 2009.

[9] M. Poudret, A. Arnould, J.-P. Comet, and P. Le Gall. Graph
transformation for topology modelling. In 4th International
Conference on Graph Transformation (ICGT’08), volume 5214
of LNCS, pages 147–161, Leicester, United Kingdom, September
2008. Springer.

[10] M. Poudret, J.-P. Comet, P. Le Gall, A. Arnould, and
P. Meseure. Topology-based geometric modelling for bi-
ological cellular processes. In 1st International Confer-
ence on Language and Automata Theory and Applications
(LATA 2007), Tarragona, Spain, March 29 - April 4 2007.
http://grammars.grlmc.com/LATA2007/proc.html.

[11] F. Vidil and G. Damiand. Moka - a Topology-based 3D Geo-
metric Modeler. http://www.sic.sp2mi.univ-poitiers.fr/moka/.

13

